
1 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Score-P – A Joint Performance
Measurement Run-Time Infrastructure for

Periscope, Scalasca, TAU, and Vampir

2 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Fragmentation of Tools Landscape

• Several performance tools co-exist
• Separate measurement systems and output formats
• Complementary features and overlapping functionality
• Redundant effort for development and maintenance
• Limited or expensive interoperability
• Complications for user experience, support, training

Vampir

VampirTrace
OTF

Scalasca

EPILOG /
CUBE

TAU

TAU native
formats

Periscope

Online
measurement

3 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

SILC Project Idea

• Start a community effort for a common infrastructure
– Score-P instrumentation and measurement system
– Common data formats OTF2 and CUBE4

• Developer perspective:
– Save manpower by sharing development resources
– Invest in new analysis functionality and scalability
– Save efforts for maintenance, testing, porting, support, training

• User perspective:
– Single learning curve
– Single installation, fewer version updates
– Interoperability and data exchange

• SILC project funded by BMBF
• Close collaboration PRIMA project

funded by DOE

4 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Partners

• Forschungszentrum Jülich, Germany
• German Research School for Simulation Sciences,

Aachen, Germany
• Gesellschaft für numerische Simulation mbH

Braunschweig, Germany
• RWTH Aachen, Germany
• Technische Universität Dresden, Germany
• Technische Universität München, Germany
• University of Oregon, Eugene, USA

5 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Score-P Architecture

Application

Vampir Scalasca Periscope TAU

Accelerator-based
parallelism

(CUDA)

Score-P measurement infrastructure

Event traces (OTF2)

User
instrumentation

Call-path profiles
(CUBE4, TAU)

Online
interface Hardware counter (PAPI, rusage)

Process-level
parallelism

(MPI, SHMEM)

Thread-level
parallelism

(OpenMP, Pthreads)

Instrumentation wrapper

Source code
instrumentation

CUBE TAUdb

6 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Score-P Functionality

• Provide typical functionality for HPC performance tools
• Instrumentation (various methods)

– Multi-process paradigms (MPI, SHMEM)
– Thread-parallel paradigms (OpenMP, POSIX threads)
– Accelerator-based paradigms (CUDA)
– And their combination

• Flexible measurement without re-compilation:
– Basic and advanced profile generation
– Event trace recording
– Online access to profiling data

• Highly scalable I/O functionality

• Support all fundamental concepts of partner’s tools

8 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Non-functional Requirements

• Portability: support all major HPC platforms
(e.g., Linux, IBM Blue Gene and AIX, SGI, Cray, Fujitsu
K/FX10, ARM)

• Scalability: petascale, supporting platforms with more
than 100K cores

• Low measurement overhead: typically less than 5%
• Robustness and QA: Nightly Builds, Continuous

Integration Testing Framework
• Easy and uniform installation through UNITE framework
• Open Source: New BSD License

9 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Future Features and Management

• Scalability to maximum available CPU core count
• Support for sampling, binary instrumentation
• Support for new programming models
• Support for new architectures

• Ensure a single official release version at all times
which will always work with the tools

• Allow experimental versions for new features or research

• Commitment to joint long-term cooperation

10 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Score-P application
measurement hands-on:

NPB-OMP / BT

11 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Performance engineering workflow

11

• Calculation of metrics
• Identification of

performance problems
• Presentation of results

• Modifications
intended to
eliminate/reduce
performance problem

• Collection of
performance data

• Aggregation of
performance data

• Prepare application
with symbols

• Insert extra code
(probes/hooks)

Preparation Measurement

Analysis Optimization

12 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Performance Analysis Steps

1. Reference preparation for validation
2. Program instrumentation
3. Summary measurement collection
4. Summary analysis report examination
5. Summary experiment scoring
6. Summary measurement collection with filtering
7. Filtered summary analysis report examination
8. Event trace collection
9. Event trace examination & analysis

13 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

NPB-OMP / Setup Environment

• Load modules (Intel compilers)

• or use modules for GCC compiler

% module load intel-compilers/14.0.0

% module load score-p/1.3/intel11.1_intelMPI4.0.0

% module load gcc/4.9.2

% module load score-p/1.3/gcc4.8.2_intelMPI4.0.0

14 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

NPB-OMP / BT Instrumentation

• Edit config/make.def to adjust build configuration
– Modify specification of compiler/linker: F77

SITE- AND/OR PLATFORM-SPECIFIC DEFINITIONS
#---
Items in this file may need to be changed for each platform.
#---
OPENMP = -openmp
#---
The Fortran compiler used for OpenMP programs
#---
#F77 = ifort

Alternative variants to perform instrumentation
...
F77 = scorep ifort

This links OMP Fortran programs; usually the same as ${F77}
FLINK = $(F77)
...

Uncomment the
Score-P compiler

wrapper specification

15 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

NPB-OMP / BT Instrumented Build

• Return to root directory and clean-up

• Re-build executable using Score-P compiler wrapper

% make clean

% make bt CLASS=B
cd BT; make CLASS=B VERSION=
make: Entering directory 'BT'
cd ../sys; cc -o setparams setparams.c -lm
../sys/setparams bt B
scorep ifort -O –g -openmp bt.f
 [...]
cd ../common; scorep ifort –O -g -openmp timers.f
scorep ifort –O -g -openmp -o ../bin.scorep/bt_B \
bt.o initialize.o exact_solution.o exact_rhs.o set_constants.o \
adi.o rhs.o zone_setup.o x_solve.o y_solve.o exch_qbc.o \
solve_subs.o z_solve.o add.o error.o verify.o mpi_setup.o \
../common/print_results.o ../common/timers.o
Built executable ../bin.scorep/bt_B
make: Leaving directory 'BT'

16 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Performance engineering workflow

16

• Calculation of metrics
• Identification of

performance problems
• Presentation of results

• Modifications
intended to
eliminate/reduce
performance problem

• Collection of
performance data

• Aggregation of
performance data

• Prepare application
with symbols

• Insert extra code
(probes/hooks)

Preparation Measurement

Analysis Optimization

17 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Performance Analysis Steps

1. Reference preparation for validation
2. Program instrumentation
3. Summary measurement collection
4. Summary analysis report examination
5. Summary experiment scoring
6. Summary measurement collection with filtering
7. Filtered summary analysis report examination
8. Event trace collection
9. Event trace examination & analysis

18 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Measurement Configuration: scorep-info

• Score-P measurements are configured via
environmental variables:
 % scorep-info config-vars --full SCOREP_ENABLE_PROFILING
 Description: Enable profiling
 [...]
SCOREP_ENABLE_TRACING
 Description: Enable tracing
 [...]
SCOREP_TOTAL_MEMORY
 Description: Total memory in bytes for the measurement system
 [...]
SCOREP_EXPERIMENT_DIRECTORY
 Description: Name of the experiment directory
 [...]
SCOREP_FILTERING_FILE
 Description: A file name which contain the filter rules
 [...]
SCOREP_METRIC_PAPI
 Description: PAPI metric names to measure
 [...]
SCOREP_METRIC_RUSAGE
 Description: Resource usage metric names to measure
 [... More configuration variables ...]

19 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Summary Measurement Collection

• Change to the directory containing the new executable
before running it with the desired configuration

 % cd bin.scorep
% cp ../jobscript/intel/run.pbs .
% vim run.pbs

...

Score-P configuration

module load score-p

export SCOREP_EXPERIMENT_DIRECTORY=scorep_sum
...

20 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Summary Measurement Collection

• Launch instrumented application
 % qsub run.pbs

% qstat –u $USER
% cat run.o<id>

 NAS Parallel Benchmarks (NPB3.3-OMP) - BT Benchmark

 Size: 102x 102x 102
 Iterations: 200 dt: 0.000300
 Number of available threads: 12

 Time step 1
 Time step 20

 [... More application output ...]

21 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Performance engineering workflow

21

• Calculation of metrics
• Identification of

performance problems
• Presentation of results

• Modifications
intended to
eliminate/reduce
performance problem

• Collection of
performance data

• Aggregation of
performance data

• Prepare application
with symbols

• Insert extra code
(probes/hooks)

Preparation Measurement

Analysis Optimization

22 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Performance Analysis Steps

1. Reference preparation for validation
2. Program instrumentation
3. Summary measurement collection
4. Summary analysis report examination
5. Summary experiment scoring
6. Summary measurement collection with filtering
7. Filtered summary analysis report examination
8. Event trace collection
9. Event trace examination & analysis

23 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

• Creates experiment directory ./scorep_sum containing
– a record of the measurement configuration (scorep.cfg)
– the analysis report that was collated after measurement

(profile.cubex)

• Interactive exploration with CUBE

BT Summary Analysis Report Examination

% ls
bt_B scorep_sum
% ls scorep_sum
profile.cubex scorep.cfg

% cube scorep_sum/profile.cubex

[CUBE GUI showing summary analysis report]

24 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Congratulations!?

• If you made it this far, you successfully used Score-P to
– instrument the application
– analyze its execution with a summary measurement, and
– examine it with an interactive analysis report explorer GUIs

• ... revealing the call-path profile annotated with
– the “Time” metric
– Visit counts
– MPI message statistics (bytes sent/received)

• ... but how good was the measurement?
– The measured execution produced the desired valid result
– however, the execution took rather longer than expected!

• even when ignoring measurement start-up/completion, therefore
• it was probably dilated by instrumentation/measurement overhead

25 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Performance Analysis Steps

1. Reference preparation for validation
2. Program instrumentation
3. Summary measurement collection
4. Summary analysis report examination
5. Summary experiment scoring
6. Summary measurement collection with filtering
7. Filtered summary analysis report examination
8. Event trace collection
9. Event trace examination & analysis

26 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

BT-MZ Summary Analysis Result Scoring

• Report scoring as textual output

• Region/callpath classification
– MPI (pure MPI library functions)
– OMP (pure OpenMP functions/regions)
– USR (user-level source local computation)
– COM (“combined” USR + OpenMP/MPI)
– ANY/ALL (aggregate of all region types)

% scorep-score scorep_sum/profile.cubex
Estimated aggregate size of event trace: 35967144402 bytes
Estimated requirements for largest trace buffer (max_tbc): 4545841910 bytes
(hint: When tracing set SCOREP_TOTAL_MEMORY > max_tbc to avoid intermediate flushes
 or reduce requirements using file listing names of USR regions to be filtered.)

flt type max_tbc time % region
 ALL 9046029930 799.89 100.0 ALL
 USR 9025830154 383.72 48.0 USR
 OMP 19113728 411.49 51.4 OMP
 COM 997150 0.75 0.1 COM
 MPI 88898 3.92 0.5 MPI

USR

USR

COM

COM USR

OMP MPI

33.5 GB total memory
4.5 GB per rank!

27 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

BT-MZ Summary Analysis Report Breakdown

• Score report breakdown by region

% scorep-score -r scorep_sum/profile.cubex
 [...]
flt type max_tbc time % region
 ALL 4545841910 799.89 100.0 ALL
 USR 4534316886 383.72 48.0 USR
 OMP 10751472 411.49 51.4 OMP
 COM 567270 0.75 0.1 COM
 MPI 206282 3.92 0.5 MPI

 USR 1452428010 152.50 19.1 binvcrhs_
 USR 1452428010 98.73 12.3 matvec_sub_
 USR 1452428010 117.78 14.7 matmul_sub_
 USR 64472760 5.01 0.6 binvrhs_
 USR 64472760 6.62 0.8 lhsinit_
 USR 48082848 3.07 0.4 exact_solution_
 OMP 1183488 0.04 0.0 !$omp parallel @exch_...
 OMP 1183488 0.04 0.0 !$omp parallel @exch_...
 OMP 1183488 0.04 0.0 !$omp parallel @exch_...
 [...]

USR

USR

COM

COM USR

OMP MPI

More than
4 GB just for

these 6 regions

28 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

BT-MZ Summary Analysis Score

• Summary measurement analysis score reveals
– Total size of event trace would be ~34 GB
– Maximum trace buffer size would be ~4.5 GB per rank

• smaller buffer would require flushes to disk during measurement
resulting in substantial perturbation

– 99.8% of the trace requirements are for USR regions
• purely computational routines never found on COM call-paths

common to communication routines or OpenMP parallel regions
– These USR regions contribute around 32% of total time

• however, much of that is very likely to be measurement overhead
for frequently-executed small routines

• Advisable to tune measurement configuration
– Specify an adequate trace buffer size
– Specify a filter file listing (USR) regions not to be measured

29 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

BT-MZ Summary Analysis Report Filtering

• Report scoring with prospective filter listing
6 USR regions
% cat ../config/scorep.filt
SCOREP_REGION_NAMES_BEGIN EXCLUDE
binvcrhs*
matmul_sub*
matvec_sub*
exact_solution*
binvrhs*
lhs*init*
timer_*

% scorep-score -f ../config/scorep.filt scorep_sum/profile.cubex
Estimated aggregate size of event trace: 82119842 bytes
Estimated requirements for largest trace buffer (max_tbc): 11528962 bytes
(hint: When tracing set SCOREP_TOTAL_MEMORY > max_tbc to avoid intermediate flushes
 or reduce requirements using file listing names of USR regions to be filtered.)

77 MB of memory in total,
10 MB per rank!

30 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

BT-MZ Summary Analysis Report Filtering

• Score report breakdown by region
% scorep-score -r –f ../config/scorep.filt scorep_sum/profile.cubex
flt type max_tbc time % region
 * ALL 20203582 416.17 52.0 ALL-FLT
 + FLT 9025826370 383.72 48.0 FLT
 - OMP 19113728 411.49 51.4 OMP-FLT
 * COM 997150 0.75 0.1 COM-FLT
 - MPI 88898 3.92 0.5 MPI-FLT
 * USR 3806 0.00 0.0 USR-FLT

 + USR 2894950740 152.50 19.1 binvcrhs_
 + USR 2894950740 98.73 12.3 matvec_sub_
 + USR 2894950740 117.78 14.7 matmul_sub_
 + USR 127716204 5.01 0.6 binvrhs_
 + USR 127716204 6.62 0.8 lhsinit_
 + USR 94933520 3.07 0.4 exact_solution_
 - OMP 1183488 0.04 0.0 !$omp parallel @exch_...
 - OMP 1183488 0.04 0.0 !$omp parallel @exch_...
 - OMP 1183488 0.04 0.0 !$omp parallel @exch_...
 [...]

Filtered
routines
marked
with ‘+’

31 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Performance Analysis Steps

1. Reference preparation for validation
2. Program instrumentation
3. Summary measurement collection
4. Summary analysis report examination
5. Summary experiment scoring
6. Summary measurement collection with filtering
7. Filtered summary analysis report examination
8. Event trace collection
9. Event trace examination & analysis

32 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

BT-MZ Filtered Summary Measurement

• Set new experiment directory and re-run measurement
with new filter configuration
– Edit job script

– Adjust configuration

– Submit job

% vim run.pbs

...
% export SCOREP_EXPERIMENT_DIRECTORY=scorep_sum_with_filter
% export SCOREP_FILTERING_FILE=../config/scorep.filt
...

% qsub run.pbs

33 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Performance Analysis Steps

1. Reference preparation for validation
2. Program instrumentation
3. Summary measurement collection
4. Summary analysis report examination
5. Summary experiment scoring
6. Summary measurement collection with filtering
7. Filtered summary analysis report examination
8. Event trace collection
9. Event trace examination & analysis

34 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

BT-MZ Tuned Summary Analysis Report Score

• Scoring of new analysis report as textual output

• Significant reduction in runtime (measurement overhead)

– Not only reduced time for USR regions, but MPI/OMP reduced
too!

• Further measurement tuning (filtering) may be
appropriate
– e.g., use “timer_*” to filter timer_start_, timer_read_, etc.

% scorep-score scorep_sum_with_filter/profile.cubex
Estimated aggregate size of event trace: 82119842 bytes
Estimated requirements for largest trace buffer (max_tbc): 11528962 bytes
(hint: When tracing set SCOREP_TOTAL_MEMORY > max_tbc to avoid intermediate flushes
 or reduce requirements using file listing names of USR regions to be filtered.)

flt type max_tbc time % region
 ALL 20203582 218.95 100.0 ALL
 OMP 19113728 216.94 99.1 OMP
 COM 997150 0.73 0.3 COM
 MPI 88898 1.27 0.6 MPI
 USR 3806 0.00 0.0 USR

35 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Advanced Measurement Configuration: Metrics

• Recording hardware counters via PAPI

• Also possible to record them only per rank

• Recording operating system resource usage

% export SCOREP_METRIC_PAPI=PAPI_L2_TCM,PAPI_FP_OPS

% export SCOREP_METRIC_PAPI_PER_PROCESS=PAPI_L3_TCM

% export SCOREP_METRIC_RUSAGE_PER_PROCESS=ru_maxrss,ru_stime

36 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Advanced Measurement Configuration: Metrics

• Available PAPI metrics
– Preset events: common set of events deemed relevant and

useful for application performance tuning
• Abstraction from specific hardware performance counters,

mapping onto available events done by PAPI internally

– Native events: set of all events that are available on the CPU
(platform dependent)

% papi_avail

% papi_native_avail

Note:
Due to hardware restrictions
- number of concurrently recorded events is limited
- there may be invalid combinations of concurrently recorded events

37 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Advanced Measurement Configuration: Metrics

• Available resource usage metrics
 % man getrusage [... Output ...]

struct rusage {

struct timeval ru_utime; /* user CPU time used */
struct timeval ru_stime; /* system CPU time used */
long ru_maxrss; /* maximum resident set size */
long ru_ixrss; /* integral shared memory size */
long ru_idrss; /* integral unshared data size */
long ru_isrss; /* integral unshared stack size */
long ru_minflt; /* page reclaims (soft page faults) */
long ru_majflt; /* page faults (hard page faults) */
long ru_nswap; /* swaps */
long ru_inblock; /* block input operations */
long ru_oublock; /* block output operations */
long ru_msgsnd; /* IPC messages sent */
long ru_msgrcv; /* IPC messages received */
long ru_nsignals; /* signals received */
long ru_nvcsw; /* voluntary context switches */
long ru_nivcsw; /* involuntary context switches */

};

 [... More output ...]

Note:
(1) Not all fields are maintained on each

platform.
(2) Check scope of metrics (per process

vs. per thread)

38 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Performance Analysis Steps

1. Reference preparation for validation
2. Program instrumentation
3. Summary measurement collection
4. Summary analysis report examination
5. Summary experiment scoring
6. Summary measurement collection with filtering
7. Filtered summary analysis report examination
8. Event trace collection
9. Event trace examination & analysis

39 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

BT Trace Measurement Collection...

• Re-run the application using the tracing mode of Score-P
– Edit run.pbs to adjust configuration

– Submit job

• Separate trace file per thread written straight into new
experiment directory ./scorep_trace

• Interactive trace exploration with Vampir

% export SCOREP_EXPERIMENT_DIRECTORY=scorep_trace
% export SCOREP_FILTERING_FILE=../config/scorep.filt
% export SCOREP_ENABLE_TRACING=true
% export SCOREP_ENABLE_PROFILING=false
% export SCOREP_TOTAL_MEMORY=50M
% export SCOREP_METRIC_PAPI=PAPI_L2_TCM,PAPI_FP_OPS

% vampir scorep_trace/traces.otf2

% qsub run.pbs

40 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Performance Analysis Steps

1. Reference preparation for validation
2. Program instrumentation
3. Summary measurement collection
4. Summary analysis report examination
5. Summary experiment scoring
6. Summary measurement collection with filtering
7. Filtered summary analysis report examination
8. Event trace collection
9. Event trace examination & analysis

41 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

BT-MZ Trace Measurement Collection...

• Interactive trace exploration with Vampir
 % vampir scorep_bt-mz_B_8x4_trace/traces.otf2

42 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Warnings and Tips Regarding Tracing

• Traces can become extremely large and unwieldy
– Size is proportional to number of processes/threads (width),

duration (length) and detail (depth) of measurement

• Traces containing intermediate flushes are of little value
Uncoordinated flushes result in cascades of distortion
– Reduce size of trace
– Increase available buffer space

• Traces should be written to a parallel file system
– /work or /scratch are typically provided for this purpose

• Moving large traces between file systems is often
impractical
– However, systems with more memory can analyze larger traces
– Alternatively, run trace analyzers with undersubscribed nodes

43 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Advanced Instrumentation Configuration: OpenMP

• Disable OPARI instrumentation of fine-grained OpenMP
constructs

• Comma-separated list of constructs
– atomic
– critical
– master
– flush
– single
– ordered
– locks
– sync (all of the above)
– region (explicit POMP annotations)

% PREP=“scorep --opari=‘--disable=flush,locks’”

44 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Advanced Measurement Configuration: MPI

• Record only for subset of the MPI functions events

• All possible sub-groups
– cg Communicator and group management
– coll Collective functions
– env Environmental management
– err MPI Error handling
– ext External interface functions
– io MPI file I/O
– misc Miscellaneous
– perf PControl
– p2p Peer-to-peer communication
– rma One sided communication
– spawn Process management
– topo Topology
– type MPI datatype functions
– xnonblock Extended non-blocking events
– xreqtest Test events for uncompleted requests

% export SCOREP_MPI_ENABLE_GROUPS=cg,coll,p2p,xnonblock

46 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Score-P User Instrumentation API

• Can be used to mark initialization, solver & other phases
– Annotation macros ignored by default
– Enabled with [--user] flag

• Appear as additional regions in analyses
– Distinguishes performance of important phase from rest

• Can be of various type
– E.g., function, loop, phase
– See user manual for details

• Available for Fortran / C / C++

47 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Score-P User Instrumentation API (Fortran)

• Requires processing by the C preprocessor

#include "scorep/SCOREP_User.inc"

subroutine foo(…)
 ! Declarations
 SCOREP_USER_REGION_DEFINE(solve)

 ! Some code…
 SCOREP_USER_REGION_BEGIN(solve, “<solver>", \
 SCOREP_USER_REGION_TYPE_LOOP)
 do i=1,100
 [...]
 end do
 SCOREP_USER_REGION_END(solve)
 ! Some more code…
end subroutine

48 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Score-P User Instrumentation API (C/C++)

#include "scorep/SCOREP_User.h"

void foo()
{
 /* Declarations */
 SCOREP_USER_REGION_DEFINE(solve)

 /* Some code… */
 SCOREP_USER_REGION_BEGIN(solve, “<solver>", \
 SCOREP_USER_REGION_TYPE_LOOP)
 for (i = 0; i < 100; i++)
 {
 [...]
 }
 SCOREP_USER_REGION_END(solve)
 /* Some more code… */
}

49 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Score-P User Instrumentation API (C++)

#include "scorep/SCOREP_User.h"

void foo()
{
 // Declarations

 // Some code…
 {
 SCOREP_USER_REGION(“<solver>", SCOREP_USER_REGION_TYPE_LOOP)
 for (i = 0; i < 100; i++)
 {
 [...]
 }
 }
 // Some more code…
}

50 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Score-P Measurement Control API

• Can be used to temporarily disable measurement for
certain intervals
– Annotation macros ignored by default
– Enabled with [--user] flag

#include “scorep/SCOREP_User.inc”

subroutine foo(…)
 ! Some code…
 SCOREP_RECORDING_OFF()
 ! Loop will not be measured
 do i=1,100
 [...]
 end do
 SCOREP_RECORDING_ON()
 ! Some more code…
end subroutine

#include “scorep/SCOREP_User.h”

void foo(…) {
 /* Some code… */
 SCOREP_RECORDING_OFF()
 /* Loop will not be measured */
 for (i = 0; i < 100; i++) {
 [...]
 }
 SCOREP_RECORDING_ON()
 /* Some more code… */
}

Fortran (requires C preprocessor) C / C++

51 Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Further Information

Score-P
– Community instrumentation & measurement infrastructure

• Instrumentation (various methods)
• Basic and advanced profile generation
• Event trace recording
• Online access to profiling data

– Available under New BSD open-source license
– Documentation & Sources:

• http://www.score-p.org
– User guide also part of installation:

• <prefix>/share/doc/scorep/{pdf,html}/
– Contact: info@score-p.org
– Bugs: support@score-p.org

	Score-P – A Joint Performance Measurement Run-Time Infrastructure for Periscope, Scalasca, TAU, and Vampir
	Fragmentation of Tools Landscape
	SILC Project Idea
	Partners
	Score-P Architecture
	Score-P Functionality
	Non-functional Requirements
	Future Features and Management
	Score-P application�measurement hands-on:�NPB-OMP / BT
	Performance engineering workflow
	Performance Analysis Steps
	NPB-OMP / Setup Environment
	NPB-OMP / BT Instrumentation
	NPB-OMP / BT Instrumented Build
	Performance engineering workflow
	Performance Analysis Steps
	Measurement Configuration: scorep-info
	Summary Measurement Collection
	Summary Measurement Collection
	Performance engineering workflow
	Performance Analysis Steps
	BT Summary Analysis Report Examination
	Congratulations!?
	Performance Analysis Steps
	BT-MZ Summary Analysis Result Scoring
	BT-MZ Summary Analysis Report Breakdown
	BT-MZ Summary Analysis Score
	BT-MZ Summary Analysis Report Filtering
	BT-MZ Summary Analysis Report Filtering
	Performance Analysis Steps
	BT-MZ Filtered Summary Measurement
	Performance Analysis Steps
	BT-MZ Tuned Summary Analysis Report Score
	Advanced Measurement Configuration: Metrics
	Advanced Measurement Configuration: Metrics
	Advanced Measurement Configuration: Metrics
	Performance Analysis Steps
	BT Trace Measurement Collection...
	Performance Analysis Steps
	BT-MZ Trace Measurement Collection...
	Warnings and Tips Regarding Tracing
	Advanced Instrumentation Configuration: OpenMP
	Advanced Measurement Configuration: MPI
	Score-P User Instrumentation API
	Score-P User Instrumentation API (Fortran)
	Score-P User Instrumentation API (C/C++)
	Score-P User Instrumentation API (C++)
	Score-P Measurement Control API
	Further Information

