
Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Review

Brian Wylie
Jülich Supercomputing Centre

Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Summary

You’ve been introduced to a variety of tools
– with hints to apply and use the tools effectively

• Tools provide complementary capabilities
– computational kernel & processor analyses
– communication/synchronization analyses
– load-balance, scheduling, scaling, …

• Tools are designed with various trade-offs
– general-purpose versus specialized
– platform-specific versus agnostic
– simple/basic versus complex/powerful

2

Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Tool selection

• Which tools you use and when you use them likely to
depend on situation
– which are available on (or for) your computer system
– which support your programming paradigms and languages
– which you are familiar (comfortable) with using

• also depends on the type of issue you have or suspect

• Awareness of (potentially) available tools can help finding
the most appropriate tools

3

Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Workflow (getting started)

• First ensure that the parallel application runs correctly
– no-one will care how quickly you can get invalid answers or

produce a directory full of corefiles
– parallel debuggers help isolate known problems
– correctness checking tools can help identify other issues
– (that might not cause problems right now, but will eventually)

• e.g., race conditions, invalid/non-compliant usage

• Generally valuable to start with an overview of execution
performance
– fraction of time spent in computation vs comm/synch vs I/O
– which sections of the application/library code are most costly

• and how it changes with scale or different configurations
– processes vs threads, mappings, bindings

4

Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Workflow (communication/synchronization)

• Communication/synchronization issues generally apply
to every computer system (to different extents) and
typically grow with the number of processes/threads
– Weak scaling: fixed computation per thread, and perhaps fixed

localities, but increasingly distributed
– Strong scaling: constant total computation, increasingly divided

amongst threads, while communication grows
– Collective communication (particularly of type “all-to-all”) result in

increasing data movement
– Synchronizations of larger groups are increasingly costly
– Load-balancing becomes increasingly challenging, and

imbalances increasingly expensive
• generally manifests as waiting time at following collective ops

5

Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Workflow (wasted waiting time)

• Waiting times are difficult to determine in basic profiles
– Part of the time each process/thread spends in communication &

synchronization operations may be wasted waiting time
– Need to correlate event times between processes/threads

• Periscope uses augmented messages to transfer timestamps and
additional on-line analysis processes

• Post-mortem event trace analysis avoids interference and provides
a complete history

• Scalasca automates trace analysis and ensures waiting times are
completely quantified

• Vampir allows interactive exploration and detailed examination of
reasons for inefficiencies

6

Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Workflow (core computation)

Effective computation within processors/cores is also vital
– Optimized libraries may already be available
– Optimizing compilers can also do a lot

• provided the code is clearly written and not too complex
• appropriate directives and other hints can also help

– Processor hardware counters can also provide insight
• although hardware-specific interpretation required

– Tools available from processor and system vendors help
navigate and interpret processor-specific performance issues

7

Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Technologies and their integration

8

Optimization

Visual trace
analysis

Automatic
profile & trace

analysis

Debugging,
error & anomaly

detection

Hardware
monitoring

Execution

SCALASCA

VAMPIR / PARAVER

PAPI

MUST

PERISCOPE

KCACHEGRIND TAU

RUBIK /
MAQAO

SYSMON /
SPINDLE /
SIONLIB /
OPENMPI

STAT

SCORE-P

LWM2 / MAP /
MPIP / O|SS /
MAQAO

DDT

Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Featured VI-HPS tools

• Score-P
– community-developed instrumenter & measurement libraries for

parallel profiling and event tracing

• CUBE
– interactive parallel profile analyses

• Scalasca
– automated event-trace analysis

9

Atelier Profilage de codes de calcul OpenMP (10-11 December 2014, ECP, Paris)

Further information

• Website
– Introductory information about the VI-HPS portfolio of tools for

high-productivity parallel application development
• VI-HPS Tools Guide
• links to individual tools sites for details and download

– Training material
• tutorial slides
• latest ISO image of VI-HPS Linux DVD with productivity tools
• user guides and reference manuals for tools

– News of upcoming events
• tutorials and workshops
• mailing-list sign-up for announcements

http://www.vi-hps.org

10

	Review
	Summary
	Tool selection
	Workflow (getting started)
	Workflow (communication/synchronization)
	Workflow (wasted waiting time)
	Workflow (core computation)
	Technologies and their integration
	Featured VI-HPS tools
	Further information

