

Introduction to VI-HPS

Brian Wylie

Jülich Supercomputing Centre

Virtual Institute – High Productivity Supercomputing

Goal: Improve the quality and accelerate the development process of complex simulation codes running on highly-parallel computer systems

Start-up funding (2006–2011) by Helmholtz Association of German Research Centres

- Activities
 - Development and integration of HPC programming tools
 - Correctness checking & performance analysis
 - Training workshops
 - Service
 - Support email lists
 - Application engagement
 - Academic workshops

http://www.vi-hps.org

VI-HPS partners (founders)

Forschungszentrum Jülich

Jülich Supercomputing Centre

RWTH Aachen University

Centre for Computing & Communication

Technische Universität Dresden

Centre for Information Services & HPC

University of Tennessee (Knoxville)

Innovative Computing Laboratory

VI-HPS partners (cont.)



Barcelona Supercomputing Center

Centro Nacional de Supercomputación

German Research School

Laboratory of Parallel Programming
 Lawrence Livermore National Lab.

Technical University of Munich

Chair for Computer Architecture

University of Oregon

Performance Research Laboratory

University of Stuttgart

■ HPC Centre

University of Versailles St-Quentin

LRC ITACA

Allinea Software Ltd

Productivity tools

MUST

MPI usage correctness checking

PAPI

Interfacing to hardware performance counters

Periscope

Automatic analysis via an on-line distributed search

Scalasca

Large-scale parallel performance analysis

TAU

Integrated parallel performance system

Vampir

Interactive graphical trace visualization & analysis

Score-P

■ Community instrumentation & measurement infrastructure

Productivity tools (cont.)

DDT/MAP/PR

Parallel debugging & profiling

KCachegrind

Callgraph-based cache analysis [x86 only]

MAQAO

- Assembly instrumentation & optimization [x86-64 only]
 mpiP/mpiPview
 - MPI profiling tool and analysis viewer

Open MPI

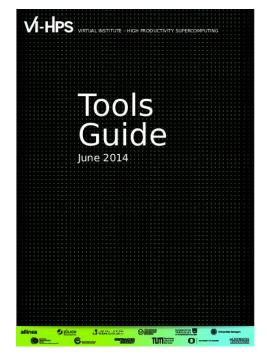
Integrated memory checking

Open|Speedshop

Integrated parallel performance analysis environment

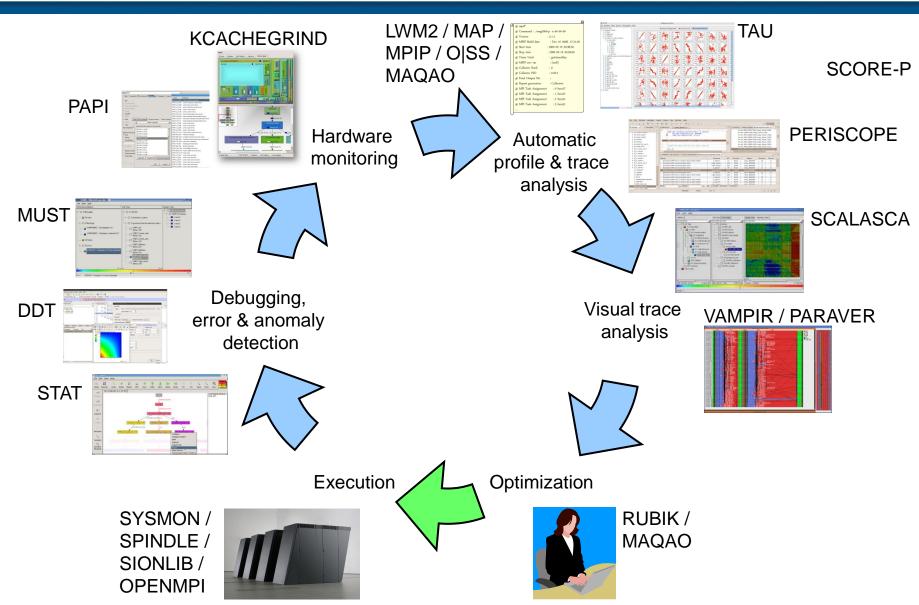
Paraver/Dimemas/Extrae

Event tracing and graphical trace visualization & analysis
 Rubik


Process mapping generation & optimization [BG only] SIONlib/Spindle

Optimized native parallel file I/O & library loading

STAT


Stack trace analysis tools

For a brief overview of tools consult the VI-HPS Tools Guide:

Technologies and their integration

Tools will *not* automatically make you, your applications or computer systems more *productive*.

However, they can help you understand how your parallel code executes and when / where it's necessary to work on correctness and performance issues.

VI-HPS training & Tuning Workshops

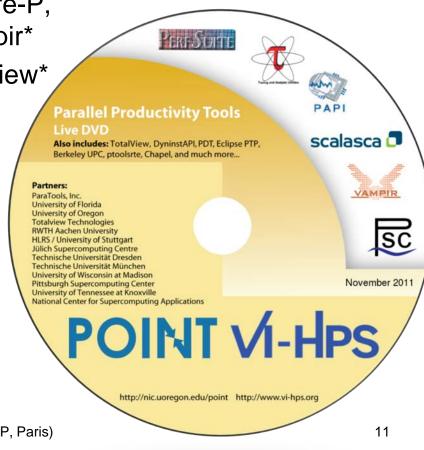
Goals

- Give an overview of the programming tools suite
- Explain the functionality of individual tools
- Teach how to use the tools effectively
- Offer hands-on experience and expert assistance using tools
- Receive feedback from users to guide future development
- For best results, bring & analyze/tune your own code(s)!
- VI-HPS Hands-on Tutorial series
 - SC'08, ICCS'09, SC'09, Cluster'10, SC'10, SC'11, EuroMPI'12, XSEDE'13, SC'13, SC'14
- VI-HPS Tuning Workshop series
 - 2008 (Aachen & Dresden), 2009 (Jülich & Bremen),
 2010 (Garching & Amsterdam/NL), 2011 (Stuttgart & Aachen),
 2012 (St-Quentin/F & Garching), 2013 (Saclay/F & Jülich)
 2014 (Barcelona/Spain, Kobe/Japan, Saclay/France, Edinburgh/UK)

Upcoming events

- 17th VI-HPS Tuning Workshop (23-27/02/15, Stuttgart)
 - Hosted by HLRS, Stuttgart, Germany
 - Using PRACE Tier-0 Hornet Cray XC40 system
 - VI-HPS and Cray performance tools

- To be confirmed
- Further events to be determined
 - (one-day) tutorials
 - With guided exercises usually using a Live-ISO
 - (multi-day) training workshops
 - With your own applications on actual HPC systems
- Check <u>www.vi-hps.org/training</u> for announced events
- Contact us if you might be interested in hosting an event


VI-HPS Linux Live DVD/ISO

- Bootable Linux installation on DVD (or USB memory stick)
- Includes everything needed to try out our parallel tools on an 64-bit x86-architecture notebook computer
 - VI-HPS tools: MUST, PAPI, Score-P, Periscope, Scalasca, TAU, Vampir*

Also: Eclipse/PTP, DDT*, TotalView*

- * time/capability-limited evaluation licences provided for commercial products
- GCC (w/ OpenMP), OpenMPI
- Manuals/User Guides
- Tutorial exercises & examples
- Produced by U. Oregon PRL
 - Sameer Shende

VI-HPS Linux Live ISO

- ISO image approximately 10GB
 - download latest version from website
 - http://www.vi-hps.org/training/live-iso/
 - optionally create bootable DVD or USB drive
- Boot directly from disk
 - enables hardware counter access and offers best performance, but no save/resume
- Boot within virtual machine (e.g., VirtualBox)
 - faster boot time and can save/resume state,
 but may not allow hardware counter access
- Boots into Linux environment for HPC
 - supports building and running provided MPI and/or OpenMP parallel application codes
 - and experimentation with VI-HPS (and third-party) tools